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Summary
Spinal cord morphometry measures derived from magnetic resonance imaging (MRI) scans
serve as valuable prognostic biomarkers for various spinal cord pathologies. Despite their
significance, interpreting these biomarkers is challenging due to substantial variability between
subjects. The lack of a standardized normalization method to mitigate this variability and
the need for a better understanding of morphometric distribution contribute to the current
knowledge gap.

In this work, we present a database of healthy normative values for six commonly used
measures of spinal cord morphometry built using a new fully-automatic normalization approach.
Morphometric measures were computed from a large open-access dataset of healthy adult
volunteers (N = 203) and brought to the common space of the PAM50 spinal cord template
using a newly proposed normalization method based on linear interpolation Figure 1.

The database is interactive, available online (https://preprint.neurolibre.org/10.55458/
neurolibre.00017) and allows filtering for sex, age, and MRI vendors. The proposed method is
open-source and easily accessible through the Spinal Cord Toolbox (SCT) v6.0 and higher.

This new morphometric database allows researchers to normalize morphometrics based on
sex and age, thereby minimizing inter-subject variability associated with demographic and
biological factors.
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Figures

Figure 1: Schematic representation of the normalization approach. (A) T2-weighted images of 203
participants from the spine-generic dataset (multi-subject) were used. The spinal cord was segmented, and
vertebral levels were identified automatically using the Spinal Cord Toolbox (SCT). (B) Six morphometric
measures were computed for each axial slice from the single-subject segmentation masks. (C) For each
vertebral level, the number of slices in the subject native space and the corresponding vertebral level in
the PAM50 template (D) were identified. Then, the morphometric measures were linearly interpolated to
the PAM50 space using the number of slices in the PAM50 template and the subject native space for
each vertebral level.

Acknowledgements
We thank Nick Guenther and Mathieu Guay-Paquet for their assistance with dataset manage-
ment, Joshua Newton for his help with implementing the algorithm in SCT, and Allan R. Martin
for his insightful discussions on the clinical aspects of the work. We also thank Nathan Molinier
for providing valuable feedback on the manuscript figures. We acknowledge all participants as
well as collaborators of the spine-generic study (https://spine-generic.readthedocs.io).

Funded by the Canada Research Chair in Quantitative Magnetic Resonance Imaging [CRC-2020-
00179], the Canadian Institute of Health Research [PJT-190258], the Canada Foundation for
Innovation [32454, 34824], the Fonds de Recherche du Québec - Santé [322736], the Natural
Sciences and Engineering Research Council of Canada [RGPIN-2019-07244], the Canada First
Research Excellence Fund (IVADO and TransMedTech), the Courtois NeuroMod project, the
Quebec BioImaging Network [5886, 35450], INSPIRED (Spinal Research, UK; Wings for Life,
Austria; Craig H. Neilsen Foundation, USA), Mila - Tech Transfer Funding Program. Supported
by the Ministry of Health of the Czech Republic, grant nr. NU22-04-00024. All rights reserved.
JV has received funding from the European Union’s Horizon Europe research and innovation
programme under the Marie Sktodowska-Curie grant agreement No 101107932.

Exclamation-circle
NOTE

NOTE: The following section in this document repeats the narrative content
exactly as found in the corresponding NeuroLibre Reproducible Preprint (NRP).
The content was automatically incorporated into this PDF using the NeuroLibre
publication workflow (Karakuzu, DuPre, et al., 2022) to credit the referenced
resources. The submitting author of the preprint has verified and approved the
inclusion of this section through a GitHub pull request made to the source repository
from which this document was built. Please note that the figures and tables have
been excluded from this (static) document. To interactively explore such outputs

Valošek et al. (2023). A database of the healthy human spinal cord morphometry in the PAM50 template space. NeuroLibre Reproducible Preprints.
https://doi.org/10.55458/neurolibre.00017.

2

https://spine-generic.readthedocs.io
https://preprint.neurolibre.org/10.55458/neurolibre.00017
https://github.com/valosekj/PAM50-normalized-metrics-paper
https://doi.org/10.55458/neurolibre.00017


and re-generate them, please visit the corresponding NRP. For more information
on integrated research objects (e.g., NRPs) that bundle narrative and executable
content for reproducible and transparent publications, please refer to DuPre et al.
(2022). NeuroLibre is sponsored by the Canadian Open Neuroscience Platform
(CONP) (Harding et al., 2023).

1. INTRODUCTION

1.1 Spinal cord morphometry measures
The spinal cord plays a vital role in the central nervous system by transmitting sensory and
motor signals between the brain and the rest of the body. It also contains essential networks
responsible for functions such as locomotion and pain processing. Structural magnetic resonance
imaging (MRI) is commonly used to assess spinal cord macrostructure and to compute measures
of spinal cord morphometry like cross-sectional area (CSA) or anteroposterior (AP) diameter.
The morphometric measures serve as objective indicators to evaluate spinal cord pathologies,
such as the extent of spinal cord atrophy in multiple sclerosis (Losseff et al., 1996; Mina et al.,
2021; Rocca et al., 2019) and amyotrophic lateral sclerosis (El Mendili et al., 2023; Paquin
et al., 2018) or the severity of spinal cord injury and spinal cord compression in traumatic
and non-traumatic spinal cord injury, respectively (Badhiwala et al., 2020; David et al., 2019;
Miyanji et al., 2007).

However, interpreting morphometric measures is challenging due to considerable inter-subject
variability associated with demographic and biological factors. For example, significantly smaller
CSA is consistently reported in females relative to males (Bédard & Cohen-Adad, 2022; Engl
et al., 2013; Mina et al., 2021; Papinutto et al., 2015, 2020; Rashid et al., 2006; Solstrand
Dahlberg et al., 2020; Yanase et al., 2006). Similarly, studies showed an association of spinal
cord CSA with cervical cord length (Martin et al., 2017a, 2017b; Oh et al., 2014), spinal canal
area, and spinal canal diameters (Kesenheimer et al., 2021; Papinutto et al., 2020). Other
factors, such as brain volume, intracranial volume, and thalamic volume also showed a strong
correlation with spinal cord CSA (Bédard & Cohen-Adad, 2022; Papinutto et al., 2020; Rashid
et al., 2006; Solstrand Dahlberg et al., 2020).

As for weight and height, studies showed only a moderate correlation with spinal cord CSA
(Papinutto et al., 2020; Yanase et al., 2006) or did not show any significant association (Bédard
& Cohen-Adad, 2022; Papinutto et al., 2020; Solstrand Dahlberg et al., 2020). Likewise, only
a weak non-significant association was reported between spinal cord CSA and age (Bédard &
Cohen-Adad, 2022; Kato et al., 2012; Papinutto et al., 2020; Yanase et al., 2006). A single
study with a wide cohort age range reported that CSA increases until about 45 years of age
and then begins to decrease (Papinutto et al., 2020).

In addition to inter-subject variability, spinal cord anatomy varies depending on the level.
Corresponding with anatomical textbooks (Standring, 2020), studies have shown an increase
in CSA around vertebral levels C4-C5 corresponding to cervical enlargement (De Leener et
al., 2018; Frostell et al., 2016; Horáková et al., 2022; Martin et al., 2017b; Mina et al., 2021;
Rocca et al., 2019). Then, the spinal cord cross-section becomes smaller, which is mirrored by
the decrease in CSA.

1.2 Normalization strategies
Various normalization strategies have been proposed to account for the above-mentioned factors
on spinal cord morphometric measures. Sex was used for CSA normalization in several works
(Bédard & Cohen-Adad, 2022; Kesenheimer et al., 2021; Papinutto et al., 2020; Rashid et al.,
2006). Other studies proposed spinal cord length as a normalization factor (El Mendili et al.,
2023; Martin et al., 2017a, 2017b; Oh et al., 2014; Rocca et al., 2019). Additionally, combining
spinal cord length with a z-score normalization was proposed to account for variations along
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the superior-inferior axis (Martin et al., 2017a, 2017b). Another approach taking into account
the dependency of spinal cord anatomy on a level involved the normalization of morphometric
measures from the compression site using non-compressed levels above and below (Guo et al.,
2022; Miyanji et al., 2007). Finally, several studies normalized CSA using the spinal canal and
brain metrics, including spinal canal area, spinal canal diameter, brain volume, intracranial
volume, thalamic volume, and head size normalization factor (Bédard & Cohen-Adad, 2022;
Horsfield et al., 2010; Kesenheimer et al., 2021; Papinutto et al., 2020; Rashid et al., 2006;
Rocca et al., 2019).

While normalization strategies showed promising outcomes, there is currently no accepted
consensus on which method to use (Cohen-Adad et al., 2021a; Papinutto et al., 2020), and
their practical implementation may encounter several challenges. First, measuring the spinal
cord length and the spinal canal area can be time-consuming due to the absence of reliable
automatic measurement techniques. Second, obtaining brain MRI scans, necessary for assessing
brain and thalamic volumes, may not be routinely available in spinal cord MRI protocols, and
neurodegenerative diseases such as multiple sclerosis can influence brain measurements and
potentially introduce bias during normalization.

1.3 Spinal cord template
Similarly to brain studies, spinal cord studies involving multiple subjects frequently rely on
templates — standardized, high-resolution images of the human spinal cord used as a reference
for comparing and analyzing individual spinal cord scans. A commonly used spinal cord template
is the PAM50 (De Leener et al., 2018). The process of aligning individual single-subject images
to the template typically involves a series of non-linear image transformations, which may
introduce inaccuracies when computing morphometric measures in the PAM50 vs. in the native
subject’s space. This is an important consideration, especially in subjects with altered spinal
cord anatomy, such as patients with spinal cord injury.

1.4 Normative values
Several multi-subject studies have provided normative values for spinal cord morphometry (De
Leener et al., 2018; Frostell et al., 2016; Horáková et al., 2022; Kato et al., 2012; Taso et
al., 2016). However, these studies show inconsistency in their reporting. Some authors only
provided values for intervertebral discs (De Leener et al., 2018; Horáková et al., 2022), while
others presented values averaged across multiple vertebral levels (Taso et al., 2016). Notably,
none of these studies have presented normative values separated by sex.

1.5 Study Objective
In this study, we present a database of healthy normative values for six commonly used measures
of spinal cord morphometry built using a new fully-automatic normalization approach. The
database is interactive, available online and allows filtering by sex, age, and MRI vendors. The
proposed methodology is open-source, easily accessible through the Spinal Cord Toolbox (SCT)
(De Leener et al., 2017), and can be used in future multi-subject studies to minimize inter-
and intra-subject variability.

2. MATERIALS AND METHODS

2.1 Participants
We used data from the spine-generic multi-subject dataset (Cohen-Adad et al., 2021b). The
dataset is open-access, organized according to the Brain Imaging Data Structure (BIDS)
standard (Gorgolewski et al., 2016; Karakuzu, Appelhoff, et al., 2022) and managed using
git-annex in this GitHub repository.
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Participants were scanned across 43 centers on 3T MRI scanners from 3 vendors (GE, Philips
and Siemens) using the consensus spine-generic acquisition protocol (Cohen-Adad et al.,
2021a). For details on sequence parameters, see Cohen-Adad et al. (2021a); Cohen-Adad et
al. (2021b).

Two experienced radiologists (MK, TR) evaluated MRI scans with a focus on the presence
of spinal cord compression. Spinal cord compression was defined as a change in spinal cord
contour at the level of an intervertebral disc on an axial or sagittal MRI plane compared with
that at the midpoint level of neighbouring vertebrae (Kadanka et al., 2017; Keřkovský et
al., 2017). Minor abnormalities such as mild disc protrusions, spine misalignment or minimal
widening of the spinal cord central canal were not considered significant pathologies.

Qualitative assessment of the spine-generic dataset by two experienced radiologists revealed
mostly mild spinal cord compression in 64 out of the total 267 volunteers (see the “pathology”
column in this spreadsheet). Those volunteers were excluded from the further analysis. The
final cohort used for the normative database construction consisted of 203 healthy subjects
(105 males and 98 females). Detailed demographic characteristics are provided in Table 1.

2.2 Data pre-processing
We used the T2-weighted images (0.8 mm isotropic resolution) covering at least C1 to T1
vertebral levels. The image processing was performed automatically using SCT v6.0 (De Leener
et al., 2017). For each participant, the spinal cord was segmented using a deep learning-based
algorithm (Gros et al., 2019) and the intervertebral discs were labeled (Ullmann et al., 2014)
to generate the cord segmentation labeled with vertebral levels (Figure 1A).

The spinal cord segmentation and disc labels were visually inspected using SCT’s quality control
report (sct_qc function) and manually corrected when necessary. The manual corrections
ensured that the spinal cord segmentation masks used for the computation of morphometric
measures were reliable. Segmentation masks were corrected using FSLeyes image viewer
(McCarthy, 2022) by adding or removing voxels when appropriate. Regarding vertebral labeling
corrections, we manually identified the posterior tip of the intervertebral discs using SCT’s
sct_label_utils function when it was necessary.

2.3 Normalization
Figure 1 shows a schematic representation of the fully-automatic normalization approach
based on linear interpolation of morphometric measures from the subject’s native space to the
anatomical dimensions of the PAM50 spinal cord template (De Leener et al., 2018).

After the preprocessing (i.e., spinal cord segmentation and labeling), the morphometric measures
were computed across individual axial slices from the spinal cord segmentation mask in the
subject’s native space. Then, the number of axial slices corresponding to each vertebral level
was identified in both the subject’s native space and in the PAM50 template based on the
labeled segmentation. Finally, the computed morphometric measures were linearly interpolated
to the PAM50 anatomical dimensions based on the number of slices for each vertebral level
in the native space and the PAM50 template. The following morphometric measures were
computed using SCT’s sct_process_segmentation for each participant: cross-sectional area
(CSA), anteroposterior (AP) diameter, transverse diameter, compression ratio, eccentricity,
and solidity.

Spinal cord CSA reflects the atrophy of the spinal cord and is computed as the area of the
spinal cord in the transverse plane. The AP diameter is the measurement of the diameter
of the spinal cord in the anterior-posterior direction, while the transverse diameter is the
measurement of the diameter of the spinal cord from side to side. The compression ratio
reflects the flattening of the spinal cord and is defined as the ratio of the AP diameter and the
transverse diameter. Eccentricity is defined as the ratio of the focal distance over the major
axis length of an ellipse with the same second moments as the spinal cord. The value is in the
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interval [0, 1]. When it is 0, the ellipse becomes a circle. Solidity is used to measure the
indentation of the spinal cord and is defined as the ratio of the area representing the spinal
cord to the area of the smallest convex polygon surrounding all positive pixels in the image.
Solidity is relevant in detecting non-convex shapes, for instance, in subjects with spinal cord
compression.

2.4 Normative values and interactive database
Morphometric measures normalized to the PAM50 space were used for the calculation of
normative values of the spinal cord morphometry. The normative values were calculated as
mean and standard deviation across participants for slices in PAM50 space corresponding
to each intervertebral disc and the middle of each vertebral level. The normative values are
provided for the whole cohort and separated by sex. For convenient introspection of the
morphometric measures, interactive figures were created using the Plotly Python library v5.9.0.
The figures allow interactive visualization of normative values for any slice in the PAM50
space and filtering for sex, age decades, and MRI vendors. The figures show values per slice
(instead of per vertebral level), to prevent the loss of information that would arise if values
were averaged within each vertebral level.

2.5 Statistical analysis
Statistical analysis was conducted using the SciPy Python library v1.10.1 (Virtanen et al.,
2020). Descriptive statistics, including mean and standard deviation, were computed for
age, height, and weight. The Shapiro-Wilk normality test was used to assess data normality.
Differences between males and females in age, height, and weight were examined using the
Wilcoxon rank-sum test. Morphometric measures in PAM50 space were averaged across
participants for each slice and compared between sex and MRI vendors using the Wilcoxon
rank-sum test. The significance level was set to alpha = 0.001.

The inter-subject coefficient of variation (COV), defined as the ratio of standard deviation and
mean, was computed per slice for all morphometrics measures. The COV was then averaged
for individual vertebral levels. Additionally, the mean COV for the whole cervical spinal cord
was computed as average across all slices.

4. DISCUSSION
This study introduced a framework to automatically normalize spinal cord morphometric
measures and computed normative metrics from a public database of healthy adults. Normative
values were reported in the PAM50 template reference space, which facilitates the comparison
of results across past and future studies. Metrics were presented as interactive figures, allowing
readers to conveniently explore morphometric values and filter them according to sex, MRI
vendor, and age.

4.1 Participants
Assessment of the spine-generic MRI scans by two experienced radiologists revealed mild
spinal cord compression in 24% of volunteers. This finding aligns with previous studies that
have reported the prevalence of asymptomatic spinal cord compression in up to 40% of the
otherwise healthy population (Kovalova et al., 2016; Smith et al., 2021). Given our objective
of constructing a database containing healthy normative morphometric values to minimize
variability in future research, we excluded the subjects with mild compression to mitigate
potential bias.
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4.2 Normalization to PAM50 anatomical dimensions
The proposed normalization approach is performed per slice (instead of per vertebral level),
providing a more exhaustive picture of cord morphometry along the superior-inferior axis.
Moreover, precise quantification of cord morphometry along the superior-inferior axis could be
relevant. For example, in the case of compression spanning only a few mm of cord tissue, it
would be desirable to know the cord morphometry on the healthy population at the equivalent
spinal cord location (ie: not the entire vertebrae, but a smaller section).

Compared to classical image-based registration, our normalization approach does not introduce
geometrical image distortions, which may result in inaccuracies when computing morphometric
measures. Traditional registration to the PAM50 template involves spinal cord straightening,
vertebral alignment between the image and the template, and iterative slice-wise non-linear
registration (De Leener et al., 2017). Each of these steps might change the spinal cord shape
and contour (see a relevant issue on GitHub).

4.3 Interactive figures and Normative database
Unlike previous studies (De Leener et al., 2018; Horáková et al., 2022; Kato et al., 2012;
Taso et al., 2016) that presented normative values using “static” tables, our paper features
interactive figures for a more exhaustive and convenient exploration of morphometric results.

Furthermore, previous studies, such as those conducted by (De Leener et al., 2018; Kato
et al., 2012; Taso et al., 2016), only provided normative values for CSA and AP diameter.
Only one recent study (Horáková et al., 2022) also featured transverse diameter, compression
ratio, solidity, and torsion. Results presented in this study feature morphometric values for
all six metrics simultaneously, offering a convenient way to explore the relationship between
individual morphometric measures. This could be particularly useful for assessing changes in
spinal anatomy between levels or for identifying levels of spinal cord compression. Additionally,
researchers have the option to show or hide traces by clicking on their corresponding legend
items, allowing for easy exploration of trends related to sex, age decades, and MRI vendors.

The proposed open-source database of normative values in the PAM50 space allows researchers
to filter subjects based on demographic and biological factors. Researchers can thus match sex,
age, and MRI vendor with their study population and use our database for normalization of
their cohort relative to the healthy population with respect to these factors. This is a relevant
feature since normalization per sex is the most commonly used normalization factor for spinal
cord morphometric measures (Bédard & Cohen-Adad, 2022; Kesenheimer et al., 2021; Mina et
al., 2021; Papinutto et al., 2020; Rashid et al., 2006; Rocca et al., 2019).

4.4 Morphometric measures
The CSA values obtained in this study for individual intervertebral discs are in line with CSA
measured in 50 healthy subjects (De Leener et al., 2018). For instance, we measured a CSA of
76.61 ± 8.35 mm2 (mean ± standard deviation) for the C3-C4 intervertebral disc, while De
Leener et al. (2018) obtained 77.46 ± 8.45 mm2 for the same intervertebral disc. In contrast,
other studies reported either smaller or larger CSA for the same C3-C4 intervertebral disc. For
example, Horáková et al. (2022) obtained a CSA of 71.7 ± 8.2 mm2, while Kesenheimer et
al. (2021) measured a CSA of 87.4 ± 8.31 mm2. This can be attributed to various factors,
including differences in MRI contrast, variations in population ages, and variations in the
segmentation methods used.

Another study based on the UK Biobank database (N = 804) measured a CSA of 66.4 ± 6.61
mm2 at C2-C3 vertebral levels (Bédard & Cohen-Adad, 2022). Here, we measured larger CSAs:
73.59 ± 7.41 mm2 at C2 and 74.32 ± 7.91 mm2 at C3 vertebral levels. This discrepancy is
likely caused by our study relying on T2-w images, whilst Bédard and Cohen-Adad used T1-w
images (Bédard & Cohen-Adad, 2022). It has been shown that T2-w scans generally yield
larger CSA compared to T1-w scans (Cohen-Adad et al., 2021b).
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As for AP diameter and transverse diameter, values measured in this study correspond with
population estimates from Frostell et al. (2016). For instance, we measured an AP diameter of
7.86 ± 0.56 mm and a transverse diameter of 11.9 ± 0.76 mm for the C2 vertebral level, while
Frostell et al. (2016) reported an AP diameter of 7.9 ± 1.6 mm and a transverse diameter of
12.3 ± 2.4 mm for the same vertebral level.

Confirming previous studies (Bédard & Cohen-Adad, 2022; Engl et al., 2013; Papinutto et al.,
2020; Rashid et al., 2006; Solstrand Dahlberg et al., 2020; Yanase et al., 2006), we showed
that females have smaller CSA relative to males across all vertebral levels. Smaller spinal cord
size is also mirrored by lower AP and transverse diameters in females compared to males.

The increase in CSA around vertebral levels C4-C5 indicates the location of cervical enlargement,
the source of the large spinal nerves that supply the upper limbs. This finding is consistent
with anatomical textbooks (Standring, 2020) and previous studies (De Leener et al., 2018;
Frostell et al., 2016; Horáková et al., 2022; Martin et al., 2017b; Mina et al., 2021; Rocca
et al., 2019). After the cervical enlargement (i.e., below level C5), the spinal cord becomes
smaller, which is mirrored by the decrease in CSA, AP diameter, and transverse diameter.
The decrease in AP diameter along the superior-inferior direction, along with the changing
trends in compression ratio and eccentricity, corresponds to the fact that the spinal cord is not
cylindrical but rather changes its shape across levels from circular shape at C1 and C2 levels
to a more elliptical shape around levels C5 and C6 (Standring, 2020).

Because various morphometric measures exhibited differing levels of inter-subject variability
(indicated by COV), we hypothesize that normalizing measures with greater inter-subject
variability, such as CSA, would yield a more pronounced impact compared to normalizing
measures with lower inter-subject variability, such as solidity. We measured a COV of 10.1%
and 10.8% for the CSA at the C2 and C3 vertebral levels, respectively. These values are similar
to the 9.96% COV reported by Bédard and Cohen-Adad for T1-w images at the C2-C3 level
(Bédard & Cohen-Adad, 2022).

The variability of morphometric measures between MRI vendors might be explained by differ-
ences in sequence parameters and/or reconstruction filters between vendors (Cohen-Adad et
al., 2021b).

4.5 Limitations and Future Work
The T2-w images from the open-access spine-generic dataset cover only the cervical spinal
cord and have a relatively narrow age range (with 93.6% of subjects aged 21 to 40 years).
Despite this limitation, it remains the largest open-source database of multi-contrast spinal
cord MRI data. We welcome future contributions of additional subjects across different age
groups and with data that encompasses the entire spinal cord.

We are aware that the morphometric measures were derived solely from T2-w MRI contrast
and using the segmentation method trained specifically for this contrast (Gros et al., 2019).
This has to be considered when comparing with other MRI contrasts, such as T1-w, which
showed a smaller CSA compared to T2-w (Cohen-Adad et al., 2021b). This might be mitigated
in the future using a contrast-agnostic segmentation algorithm (Bédard, 2023).

Future efforts will focus on validating the proposed methods in pathologies such as traumatic
and non-traumatic spinal cord injury and multiple sclerosis. This validation process will provide
valuable insights into the applicability and accuracy of the methods in the context of various
spinal cord conditions.

4.6 Conclusions
We introduced a new approach for the normalization of spinal cord morphometric measures
using the PAM50 spinal cord template. We built an interactive database of spinal cord
morphometric values across 203 healthy adults. The database can be used to normalize spinal
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cord morphometric features, stratified according to factors such as sex, age, and MRI vendors.
This database can also be used to further inspect demographic, biological and image acquisition
factors associated with inter-subject variability.

The proposed methodology and results are open-source and fully reproducible. The database
and normalization method is applicable to new datasets via the Spinal Cord Toolbox (SCT)
v6.0 and higher.
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Keřkovský, M., Bednařıḱ, J., Jurová, B., Dušek, L., Kadaňka, Z., Kadaňka, Z., Němec,
M., Kovaľová, I., Šprláková-Puková, A., & Mechl, M. (2017). Spinal cord MR diffusion
properties in patients with degenerative cervical cord compression. J. Neuroimaging, 27 (1),
149–157. https://doi.org/10.1111/jon.12372

Kesenheimer, E. M., Wendebourg, M. J., Weigel, M., Weidensteiner, C., Haas, T., Richter, L.,
Sander, L., Horvath, A., Barakovic, M., Cattin, P., Granziera, C., Bieri, O., & Schlaeger,
R. (2021). Normalization of spinal cord total Cross-Sectional and gray matter areas as
quantified with radially sampled averaged magnetization inversion recovery acquisitions.
Front. Neurol., 12. https://doi.org/10.3389/fneur.2021.637198

Kovalova, I., Kerkovsky, M., Kadanka, Z., Kadanka, Z., Nemec, M., Jurova, B., Dusek,
L., Jarkovsky, J., & Bednarik, J. (2016). Prevalence and imaging characteristics of
nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine, 41(24),
1908–1916. https://doi.org/10.1097/brs.0000000000001842

Losseff, N. A., Webb, S. L., O’Riordan, J. I., Page, R., Wang, L., Barker, G. J., Tofts, P.
S., McDonald, W. I., Miller, D. H., & Thompson, A. J. (1996). Spinal cord atrophy and
disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential
to monitor disease progression. Brain, 119 ( Pt 3), 701–708. https://doi.org/10.1093/
brain/119.3.701

Martin, A. R., De Leener, B., Cohen-Adad, J., Cadotte, D. W., Kalsi-Ryan, S., Lange, S.
F., Tetreault, L., Nouri, A., Crawley, A., Mikulis, D. J., Ginsberg, H., & Fehlings, M. G.
(2017a). A novel MRI biomarker of spinal cord white matter injury: T2∗-weighted white
matter to gray matter signal intensity ratio. AJNR Am. J. Neuroradiol., 38(6), 1266–1273.
https://doi.org/10.3174/ajnr.a5162

Martin, A. R., De Leener, B., Cohen-Adad, J., Cadotte, D. W., Kalsi-Ryan, S., Lange, S.
F., Tetreault, L., Nouri, A., Crawley, A., Mikulis, D. J., Ginsberg, H., & Fehlings, M. G.
(2017b). Clinically feasible microstructural MRI to quantify cervical spinal cord tissue injury
using DTI, MT, and T2*-Weighted imaging: Assessment of normative data and reliability.
AJNR Am. J. Neuroradiol., 38(6), 1257–1265. https://doi.org/10.3174/ajnr.a5163

McCarthy, P. (2022). FSLeyes (Version 1.4.0). Zenodo. https://doi.org/10.5281/zenodo.
6511596

Mina, Y., Azodi, S., Dubuche, T., Andrada, F., Osuorah, I., Ohayon, J., Cortese, I., Wu,
T., Johnson, K. R., Reich, D. S., Nair, G., & Jacobson, S. (2021). Cervical and thoracic
cord atrophy in multiple sclerosis phenotypes: Quantification and correlation with clinical
disability. NeuroImage: Clinical, 30, 102680. https://doi.org/10.1016/j.nicl.2021.102680

Miyanji, F., Furlan, J. C., Aarabi, B., Arnold, P. M., & Fehlings, M. G. (2007). Acute
cervical traumatic spinal cord injury: MR imaging findings correlated with neurologic
outcome–prospective study with 100 consecutive patients. Radiology, 243(3), 820–827.
https://doi.org/10.1148/radiol.2433060583

Oh, J., Seigo, M., Saidha, S., Sotirchos, E., Zackowski, K., Chen, M., Prince, J., Diener-West,
M., Calabresi, P. A., & Reich, D. S. (2014). Spinal cord normalization in multiple sclerosis.
J. Neuroimaging, 24(6), 577–584. https://doi.org/10.1111/jon.12097

Papinutto, N., Asteggiano, C., Bischof, A., Gundel, T. J., Caverzasi, E., Stern, W. A., Bas-
tianello, S., Hauser, S. L., & Henry, R. G. (2020). Intersubject variability and normalization
strategies for spinal cord total Cross-Sectional and gray matter areas. J. Neuroimaging,
30(1), 110–118. https://doi.org/10.1111/jon.12666

Papinutto, N., Schlaeger, R., Panara, V., Zhu, A. H., Caverzasi, E., Stern, W. A., Hauser,
S. L., & Henry, R. G. (2015). Age, gender and normalization covariates for spinal
cord gray matter and total cross-sectional areas at cervical and thoracic levels: A 2D

Valošek et al. (2023). A database of the healthy human spinal cord morphometry in the PAM50 template space. NeuroLibre Reproducible Preprints.
https://doi.org/10.55458/neurolibre.00017.

11

https://doi.org/10.1111/jon.12372
https://doi.org/10.3389/fneur.2021.637198
https://doi.org/10.1097/brs.0000000000001842
https://doi.org/10.1093/brain/119.3.701
https://doi.org/10.1093/brain/119.3.701
https://doi.org/10.3174/ajnr.a5162
https://doi.org/10.3174/ajnr.a5163
https://doi.org/10.5281/zenodo.6511596
https://doi.org/10.5281/zenodo.6511596
https://doi.org/10.1016/j.nicl.2021.102680
https://doi.org/10.1148/radiol.2433060583
https://doi.org/10.1111/jon.12097
https://doi.org/10.1111/jon.12666
https://doi.org/10.55458/neurolibre.00017


phase sensitive inversion recovery imaging study. PLoS One, 10(3), e0118576. https:
//doi.org/10.1371/journal.pone.0118576

Paquin, M. E., Mendili, M. M. E., Gros, C., Dupont, S. M., Cohen-Adad, J., & Pradat, P. F.
(2018). Spinal cord gray matter atrophy in amyotrophic lateral sclerosis. AJNR Am. J.
Neuroradiol., 39(1), 184–192. https://doi.org/10.3174/ajnr.a5427

Rashid, W., Davies, G. R., Chard, D. T., Griffin, C. M., Altmann, D. R., Gordon, R., Kapoor,
R., Thompson, A. J., & Miller, D. H. (2006). Upper cervical cord area in early relapsing-
remitting multiple sclerosis: Cross-sectional study of factors influencing cord size. J. Magn.
Reson. Imaging, 23(4), 473–476. https://doi.org/10.1002/jmri.20545

Rocca, M. A., Valsasina, P., Meani, A., Gobbi, C., Zecca, C., Rovira, À., Montalban, X.,
Kearney, H., Ciccarelli, O., Matthews, L., Palace, J., Gallo, A., Bisecco, A., Gass, A., Eisele,
P., Lukas, C., Bellenberg, B., Barkhof, F., Vrenken, H., … Filippi, M. (2019). Clinically
relevant cranio-caudal patterns of cervical cord atrophy evolution in MS. Neurology, 93(20),
E1852–E1866. https://doi.org/10.1212/wnl.0000000000008466

Smith, S. S., Stewart, M. E., Davies, B. M., & Kotter, M. R. N. (2021). The prevalence of
asymptomatic and symptomatic spinal cord compression on magnetic resonance imaging:
A systematic review and meta-analysis. Global Spine Journal, 11(4), 597–607. https:
//doi.org/10.1177/2192568220934496

Solstrand Dahlberg, L., Viessmann, O., & Linnman, C. (2020). Heritability of cervical spinal
cord structure. Neurol Genet, 6(2), e401. https://doi.org/10.1212/nxg.0000000000000401

Standring, S. (2020). Gray’s anatomy: The anatomical basis of clinical practice. Elsevier.

Taso, M., Girard, O. M., Duhamel, G., Le Troter, A., Feiweier, T., Guye, M., Ranjeva,
J. P., & Callot, V. (2016). Tract-specific and age-related variations of the spinal cord
microstructure: A multi-parametric MRI study using diffusion tensor imaging (DTI) and
inhomogeneous magnetization transfer (ihMT). NMR Biomed., 29(6), 817–832. https:
//doi.org/10.1002/nbm.3530

Ullmann, E., Pelletier Paquette, J. F., Thong, W. E., & Cohen-Adad, J. (2014). Automatic
labeling of vertebral levels using a robust Template-Based approach. Int. J. Biomed.
Imaging, 2014, 719520. https://doi.org/10.1155/2014/719520

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., Walt, S. J. van der, Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E.,
… Vázquez-Baeza, Y. (2020). SciPy 1.0: Fundamental algorithms for scientific computing
in python. Nat. Methods, 17 (3), 261–272. https://doi.org/10.1038/s41592-019-0686-2

Yanase, M., Matsuyama, Y., Hirose, K., Takagi, H., Yamada, M., Iwata, H., & Ishiguro, N.
(2006). Measurement of the cervical spinal cord volume on MRI. J. Spinal Disord. Tech.,
19(2), 125–129. https://doi.org/10.1097/01.bsd.0000181294.67212.79

Valošek et al. (2023). A database of the healthy human spinal cord morphometry in the PAM50 template space. NeuroLibre Reproducible Preprints.
https://doi.org/10.55458/neurolibre.00017.

12

https://doi.org/10.1371/journal.pone.0118576
https://doi.org/10.1371/journal.pone.0118576
https://doi.org/10.3174/ajnr.a5427
https://doi.org/10.1002/jmri.20545
https://doi.org/10.1212/wnl.0000000000008466
https://doi.org/10.1177/2192568220934496
https://doi.org/10.1177/2192568220934496
https://doi.org/10.1212/nxg.0000000000000401
https://doi.org/10.1002/nbm.3530
https://doi.org/10.1002/nbm.3530
https://doi.org/10.1155/2014/719520
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1097/01.bsd.0000181294.67212.79
https://doi.org/10.55458/neurolibre.00017

	Summary
	Figures
	Acknowledgements
	1. INTRODUCTION
	1.1 Spinal cord morphometry measures
	1.2 Normalization strategies
	1.3 Spinal cord template
	1.4 Normative values
	1.5 Study Objective

	2. MATERIALS AND METHODS
	2.1 Participants
	2.2 Data pre-processing
	2.3 Normalization
	2.4 Normative values and interactive database
	2.5 Statistical analysis

	4. DISCUSSION
	4.1 Participants
	4.2 Normalization to PAM50 anatomical dimensions
	4.3 Interactive figures and Normative database
	4.4 Morphometric measures
	4.5 Limitations and Future Work
	4.6 Conclusions
	References


