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ABSTRACT
The utilization of structural, functional, and biochemical data from the human brain has grown
in addressing inquiries related to neurodegenerative and neuropsychiatric conditions. However,
the normal variability within these measures has not been systematically reported. In this
work, a database comprising these outcome measures in a healthy population (n=51) was
established to potentially serve as a comparative reference. Healthy individuals underwent
standardized procedures to ensure consistent collection of magnetic resonance imaging (MRI)
and spectroscopy data. The MR data was acquired using a 3T scanner with various sequences,
including MPRAGE 3D T1w, pseudo-continuous arterial spin labelling (pCASL), and single voxel
proton magnetic resonance spectroscopy (1H-MRS). Established and custom software tools
were employed to analyze outcome measures such as tissue segmentation, cortical thickness,
cerebral blood flow, metabolite levels, and temperature estimated using MRS. This study
provides a comprehensive overview of the data analysis process, aiming to facilitate future
utilization of the collected data through an interactive dashboard developed in R using the
Shiny framework.

INTRODUCTION
The pursuit to understand the biological foundations of neurodegenerative and neuropsychi-
atric conditions has led to an extensive exploration of brain imaging and neurophysiological
tools. Integrating various magnetic resonance imaging (MRI) modalities has emerged as an
essential approach to obtain a comprehensive understanding of these conditions. By combining
morphological, functional, and biochemical data, researchers gain valuable insights into the
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intricate mechanisms underlying neurological diseases. These insights extend to identifying
potential biomarkers and therapeutic targets, thereby paving the way for improved treatment
strategies for neurological disorders.

A notable challenge in understanding the brain’s behaviour in disease lies in the incomplete
comprehension of its state within a healthy population at rest. In the field of brain imaging,
the importance of considering variability between individuals and across different brain regions
is high. Therefore, creating a comprehensive database that includes information from multiple
brain regions, and multiple modalities in a healthy population is invaluable for guiding future
research and clinical use. Such a database can be utilized as a reference, allowing researchers
to measure deviations, potentially enabling early disease detection and monitoring progression
across different populations. Furthermore, it enables a focused analysis of specific subsets of
groups, for example, examining outcomes-based factors like sex or age that allow for matched
comparisons.

Our study provides a description of the meticulous methodology that ensures consistency of
the data acquisition and analysis methods. Standardized procedures have been followed to
maximize the precision of the data gathered. The outcomes available include morphological
measures such as brain tissue volume (gray matter, white matter, and cerebral spinal fluid) and
cortical thickness. Additionally, we have included blood perfusion levels, biochemical profiles,
and temperature of different brain regions assessed through MR spectroscopy (MRS).

The MRShiny Brain application has been developed as a normative live database, designed
to facilitate user-friendly access to a wide spectrum of morphological, perfusion, biochemical,
and temperature brain data. Our core objective revolves around presenting a normative
representation of the healthy brain during rest with the intent of empowering the scientific
community to formulate a priori hypotheses. Recognizing that the analysis of MRI/MRS data
can be a time-consuming and expertise-demanding task, we aim to provide these data and the
analysis scripts in an accessible format.

As we examine brain function, it becomes evident that understanding the brain in a healthy
state is pivotal to understanding it in pathological states. The challenge of understanding the
brain’s intricacies in various states, particularly during rest, underscores the importance of our
study. By building a comprehensive foundation of knowledge through the integration of diverse
brain outcome measures, into a user-friendly database we aim to drive advancements in our
understanding of brain function.

METHODS

Demographics

This is a live database that undergoes continuous updates, resulting in changes to the following
information. At the time of this report, 51 healthy participants have been recruited for this
experiment (24M, mean age = 27.4 years, SD = 6.16 years, range = 19 - 47 years). Participants
were asked to arrive at the laboratory in a fasting state, and were given one muffin to eat
about one hour prior to the MRI scan to account for food intake effects (Kubota et al., 2021).
The timing of the scan was kept consistent (11:30am-12:30pm) across participants, to account
for circadian rhythm effects of metabolites (Eckel-Mahan & Sassone-Corsi, 2013). Regarding
female participants, their testing was based on self-reported information regarding the phase
of their menstrual cycle, specifically targeting the follicular phase (Hjelmervik & others, 2018).
Figure 1 illustrates the study design.
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Figure 1: Study design. MR scans included an anatomical 3DT1, a pseudo-continuous arterial spin
labelling (pCASL) sequence, and an MR Spectroscopy (MRS) sequence sLASER. MRS data were collected
at 4 different voxel locations (periungual anterior cingulate cortex [pACC], anterior mid-cingulate cortex
[aMCC], posterior mid-cingulate cortex [pMCC], and the posterior cingulate cortex [PCC]) The order of
the MRS acquisition from each voxel was randomized for each participant. Figure modified with text,
markings, and colour after adaptation of “Nervous System & Medical Equipment” from Servier Medical
Art by Servier, licensed under a Creative Commons Attribution 3.0 Unported License.

MR Acquisition Protocol

MRI data were collected using a 3T Philips Ingenia Elition X with a 32-channel SENSE head
coil, and the sequences included:

Sequence Parameters
3D MPRAGE - TE/TR/TI = 4.3/9.3/950ms- Shot interval =

2400ms- Resolution = 0.8mm³ isotropic- FOV
(ap/rl/fh) = 256/256/180mm³- Scan time =
5:49 min

pCASL - TE/TR = 12/4174ms- Post-labelling duration
= 2000ms- Labelling duration = 1800ms- Total
scan duration = 5.59 min- Four pairs of
perfusion-weighted and control scans

1H-MRS - TE/TR = 32/5000 ms- NSA = 64- Voxel size
= 24/22/15 mm³ (7.9mL)- Automated 2nd order
shimming- 32-step phase cycle- Water
suppression using frequency selective Excitation-
Four cingulate cortex locations (pACC, aMCC,
pMCC, PCC) randomized

MR Analysis

Structural Measures:
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Image Segmentation was performed in FSL (v6.05) using default options, ROI segmentation
was performed using in-house MATLAB scripts. ROI Cortical Thickness was performed in
native space for each subject using Freesurfer (v 7.2.0 - code here).

Arterial Spin-Labeled MRI Preprocessing and Cerebral Blood Flow Computation:

Arterial spin-labeled MRI images were preprocessed using ASLPrep 0.6.0rc (Adebimpe et al.,
2022; Salo et al., 2023), which is based on fMRIPrep (Esteban & others, 2019, 2020) and
Nipype 1.8.6s.

Anatomical data preprocessing

A total of 50 T1-weighted (T1w) images were found within the input BIDS dataset.
The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (B. Avants et al., 2009), distributed with ANTs 2.3.3 (B. B. Avants
& others, 2008), and used as T1w-reference throughout the workflow. The T1w-reference
was then skull-stripped with a Nipype implementation of the antsBrainExtraction.sh

workflow (from ANTs), using OASIS30ANTs as target template. Brain tissue segmentation of
cerebrospinal fluid (CSF), white-matter (WM) and gray-matter (GM) was performed on the
brain extracted T1w using fast (FSL 6.0.7.1) (Jenkinson & others, 2002).

ASL data preprocessing

For the 1 ASL run obtained per subject, the following preprocessing was performed:

First, the second volume of the ASL timeseries was selected as the reference volume and brain
extracted using Nipype’s custom brain extraction workflow. First, the middle M0 volume of
the ASL timeseries was selected as the reference volume and brain extracted using Nipype’s
custom brain extraction workflow. Susceptibility distortion correction (SDC) was omitted.
Head-motion parameters were estimated for the ASL data using FSL’s mcflirt (Wang &
others, 2008). Motion correction was performed separately for each of the volume types in order
to account for intensity differences between different contrasts, which, when motion corrected
together, can conflate intensity differences with head motions (Jenkinson & Smith, 2001).
Next, ASLPrep concatenated the motion parameters across volume types and re-calculated
relative root mean-squared deviation. ASLPrep co-registered the ASL reference to the T1w
reference using FSL’s flirt (Greve & Fischl, 2009), which implemented the boundary-based
registration cost-function (Power & others, 2014). Co-registration used 6 degrees of freedom.
The quality of co-registration and normalization to template was quantified using the Dice
and Jaccard indices, the cross-correlation with the reference image, and the overlap between
the ASL and reference images (e.g., image coverage). Several confounding timeseries were
calculated, including both framewise displacement (FD) and temporal derivative of variance
over runs (DVARS). FD and DVARS are calculated using the implementations in Nipype
(following the definition by (Buxton et al., 1998)) for each ASL run. ASLPrep summarizes
in-scanner motion as the mean FD and relative root-mean square displacement.

Cerebral blood flow computation and denoising

ASLPrep calculated cerebral blood flow (CBF) from the single-delayPCASL using a single-
compartment general kinetic model (Abraham et al., 2014). Calibration (M0) volumes
associated with the ASL scan were smoothed with a Gaussian kernel (FWHM=5 mm) and the
average calibration image was calculated and scaled by 1.

ROI CBF estimates

ROI perfusion levels were extracted in native space using each ROI’s mask. Firstly the images
were co-registered using flirt (Greve & Fischl, 2009), the resampled mask was then binarized,
and ROI CBF was calculated using fslstats cbf_extraction.sh (code here).
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Quality Evaluation Index (QEI)

The QEI was computed for each CBF map (Dolui et al., 2017). QEI is based on the similarity
between the CBF and the structural images, the spatial variability of the CBF image, and the
percentage of grey matter voxels containing negative CBF values ’Quality_aslprep.sh‘ (code
here). For more details of the pipeline, see ASLPrep-Documentation.

MR Spectroscopy:

MRS analysis was performed following the recent expert guideline recommendations (Near
et al., 2021). MRS data was pre-processed (e.g., frequency alignment, and eddy-current

correction) and quantified using in-house MATLAB scripts. Spectral fitting was performed in
LCModel (6.3). The basis set was simulated using the FID-A run-simLaserShapted_fast.m

(Simpson et al., 2017) function (code here). The simulation included the following metabolites:
PE, Asc, Scyllo, Glu, Gln, Cre, NAA, NAAG, PCr, GSH, Gly, Glc, GPC, Ala, Asp, GABA, Ins,
Lac, and Tau. The LCModel fit was performed in the range of 0.5 to 4.0 ppm.

MRS thermometry:

MRS thermometry exploits the temperature dependence of the location of the water peak
on the frequency axis (-0.01 ppm/°C), whereas that at the reference metabolite [e.g., N-
acetylasparteate (NAA)] is not temperature dependent (Cady et al., 1995; Thrippleton et al.,
2014). After data pre-processing (i.e., frequency alignment, eddy current correction), local
brain temperature (TB) was estimated by calculating the chemical shift difference between
water and NAA measured in parts per million (ppm) using the following equation:

𝑇𝐵(∘C) = 100 × [Δ(𝑁𝐴𝐴𝑝𝑝𝑚 −𝑤𝑎𝑡𝑒𝑟𝑝𝑝𝑚) + 2.665] + 37 (1)

NAAppm and waterppm values were defined as the mid-point of the full width half max
(FWHM) for both the NAA and water peaks, respectively. TB was estimated for each voxel
separately (i.e., pACC, aMCC, pMCC, PCC - code here).

DASHBOARD

To facilitate the reuse and exploration of the data, we have developed an interactive web
application using R Shiny. This application provides an intuitive and user-friendly interface for
accessing and analyzing the dataset. The application allows users to interact with the data in
a dynamic manner, enabling exploration, visualization, and integration with other datasets.
The dataset is composed of different types of data structural, perfusion, and biochemical.
These data can all be downloaded directly via the MRShiny Brain web-application deployed on
NeuroLibre (Harding et al., 2023; Karakuzu et al., 2022).

Structural

1. GM: gray matter fraction in each region of interest.
2. WM: white matter fraction in each region of interest.
3. CSF: cerebrospinal fluid fraction in each region of interest.
4. CT: Cortical thickness in mm in each region of interest.

Perfusion

1. CBF: cerebral blood flow (mL/gr/min) in each region of interest.
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Biochemical

1. Metabolites available: N-Acetyl aspartic acid (NAA), total creatine (tCr), total choline
(tCho), myoinositol (mI), glutamate (Glu), glutamine (Gln), and glutamate+glutamine
(Glx).

2. Quality Measures signal-to-noise-ration (SNR), linewidth of the water spectrum (LW),
and Cramer-Rao Lower Bounds of each metabolite (CRLB).

Thermometry

1. Temperature: Temperature in Celcius {math}\degree C in each brain region of interest.

RESULTS
The quality metrics of the spectra can be seen in the application directly, while Figure 2
illustrates the pre-processed and baseline corrected spectra.

Figure 2: MRS Average Spectra at each brain location. Averaged participant spectra are illustrated in
gray, and the group mean in black. MRS data were collected at 4 different voxel locations (periungual
anterior cingulate cortex [pACC], anterior mid-cingulate cortex [aMCC], posterior mid-cingulate cortex
[pMCC], and the posterior cingulate cortex [PCC]).

MRS and CBF data (1 M) were unable to be included since the individual transients, and
pCASL data were not properly saved, but CT data was viable. For three participants we
excluded metabolites from one location (i.e., pACC (n=1), aMCC (n=1), and PCC (n=1)), due
to linewidth of the water being >10Hz. The MRS data quality from the remaining participants
are illustrated in app. The mean ± std.dev of the quality evaluation index (QEI)25 for ASL
CBF maps for the 50 subjects is 0.794 ± 0.032.
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CONCLUSION
In summary, this work provides a database containing structural, functional, and biochemical
data from the brains of 51 healthy participants. This resource serves as a valuable reference
for researchers exploring neurodegenerative and neuropsychiatric conditions. The interplay of
structural, functional, and biochemical measures within a healthy population may provide an
understanding of normal variability, laying the groundwork for more nuanced investigations
into neurological conditions.
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