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Introduction
Neurostimulation can be applied on a large panel of nervous system disorders and injuries
by modulating motor, sensory and cognitive functions through electrical stimulation. This
technology offers, amongst others, a promising method to restore motor functions in patients
living with paralysis due to neurotrauma, with strong potential for enhanced efficacy through
improved spatiotemporal precision (James et al., 2018; Ting et al., 2021). Neuromodulation
systems are becoming increasingly complex (Anderson et al., 2018; Schüpbach et al., 2017),
and this trend is expected to continue and scale further in the future (De Ridder et al., 2021).
Advances in manufacturing, such as the miniaturization of electrodes enabling higher spatial
selectivity, the development of biocompatible designs for targeting areas closer to the nervous
system, and the integration of wireless systems providing greater freedom of movement, are
key drivers of this evolution (Jun et al., 2017; Tsai et al., 2017; Won et al., 2020). Whether in
large channel-count or smaller devices such as current clinical deep brain stimulation (DBS)
leads, the effectiveness of neuromodulation depends on system identification and on fine-tuning
numerous control parameters to meet individual needs, problems that advanced optimization
algorithms have the potential to solve more efficiently than traditional approaches.

A.I. In neurostimulation optimization
A wide range of pre-clinical studies, including on epilepsy (Pineau et al., 2009) and Parkinson’s
disease (Gao et al., 2023) are actively exploring how to enhance neuromodulation results
using diverse machine learning (ML) methods such as decision trees (De Andres et al., 2021;
Gebodh & Bikson, 2021), random forests (Gebodh & Bikson, 2021; Shukla et al., 2014), neural
networks (NN) (Gebodh & Bikson, 2021; Shukla et al., 2012) support vector machines (SVM)
(De Andres et al., 2021; Gebodh & Bikson, 2021; Medaglia et al., 2020) and Reinforcement
Learning (RL) (Gao et al., 2023; Pineau et al., 2009; Yu et al., 2021). However, those ML
methods rely on pre-training and require a huge number of iterations to converge to a solution,
making them currently impractical to use in an online context. Online neurostimulation
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optimization means in vivo trial-and-error tuning of a neural interface, where decisions involve
selecting from a large number of parameter options, and the constantly evolving environment
induces both noise and non-stationarity in the response.

To date, real-time neurostimulation optimization in clinical studies is performed by adaptive
stimulation (Arlotti et al., 2018; Rosa et al., 2015; Swann et al., 2018). This closed-loop
method traditionally relies on turning on and off DBS and varying the amplitude based on
neurophysiological feedback, but this approach is not tailored for a complex multivariate
problem such as selecting what specific stimulation pattern to activate, among an immense
number of options for varying contact, frequency, current amplitude and pulse width. To
offer a solution adapted to optimization of multi parameters, some studies focus on a class of
algorithms that does not require training and that relies on parametric models of stimulation
properties. Bayesian Optimization based on Gaussian Process (GPBO) can offer an effective
solution (Aiello et al., 2023; Bonizzato et al., 2023; Choinière et al., 2024; Laferriere et al.,
2020; Sarikhani et al., 2022). GPBO tests single-input parameter combinations (“queries”),
leveraging responses to build an evidence-based approximation (“surrogate” function) that
models how stimulus choices affect the desired output. This approach allows to efficiently
explore high dimensional spaces in a small number of iterations.

Optimizing stimulation for movement disorders
Restoring motor control after neurotrauma or in disease is a very complex neuromodulation
challenge since the movement is controlled by distributed brain and spinal networks with variable
dynamic states and outputs. Promising studies already show how advanced optimization
methods can enhance mobility (Bonizzato et al., 2023; Grahn et al., 2014), (Losanno et al.,
2021), but the field of motor neuroprosthetics is still young. Novel exciting demonstrations
of motor control restoration feature complex neuroprosthetic systems, with a high degree of
control complexity (Rowald et al., 2022; Wagner et al., 2018). Research to develop optimization
agents to fine-tune such systems once they are implanted largely benefits from offline modeling
and simulation (Capogrosso et al., 2013; Rowald et al., 2022).

To effectively train and test complex ML models or simulate online experimental neurostim-
ulation sessions, a diverse range of neurostimulation datasets is essential (Bonizzato et al.,
2023; Wang et al., 2023). Such datasets must account for variability across subjects, species,
and neural interface targets. For example, rodents provide the advantage of generating large
datasets due to relatively restrained costs, while NHPs offer a closer approximation to human
brain complexity, making both species invaluable for research. The characteristics of any single
dataset can vary widely due to environmental factors and experimental design, leading to
significant differences not only between rodent and NHP data but also across neural targets
such as the spinal cord and cortex; even within subjects of the same species.

Although synthetic data can serve as an initial benchmark for algorithm performance, it
falls short in addressing the complexities inherent to in vivo data. Many neurophysiological
mechanisms, such as the biological variability of motor responses, remain poorly modeled. This
variability causes, among other things, inconsistencies in neural output to identical stimulation
parameters and is compounded by noise introduced by experimental setups. These challenges
make in vivo validation important, not only for assessing algorithm functionality but also
for uncovering patterns of responses to neural stimuli and deepening our understanding of
neural circuits response dynamics and non-stationarities. However, expanding the collection of
neurostimulation datasets faces significant barriers, including high costs, technical complexity,
and ethical considerations.

The recent surge in optimization algorithms within this field opens new possibilities for
neurostimulation applications. To further push the boundaries of AI in neurostimulation, it is
essential to broaden the dataset pool, thereby supporting a wider range of innovative use cases.

Our goal is to develop NeuroMOSAICS (Neurostimulation Multi-scale Open-Source Across
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Interface, Conditions & Species), a collection of open-access datasets comprising a wide range
of different neurostimulation scenarios: in rats and non-human primates (NHP), in sedated
and awake animals, in intact and injured subjects, in small and large input spaces optimization,
and in both cortical and spinal neurostimulation interventions. NeuroMOSAICS aims to
support the development of neurostimulation optimization algorithms. For each dataset, we
highlight common challenges that any optimization algorithm must address when applied in
this context. Our goal is not only to provide a series of datasets, but also to shed light on
these recurring challenges for anyone interested in advancing this field and accelerating the
development of related technologies. This collection is an attempt to regroup and valorize all
neurostimulation characterization datasets opened by the community. Beyond enabling the
training and evaluation of data-demanding algorithms, this collaborative initiative also aims to
make valuable knowledge more accessible, thereby encouraging the ML community to design
solutions tailored to neurostimulation problems.

This living white paper intends to evolve in time with new incoming open-source datasets. New
datasets will be added as we target additional unmet needs in neurostimulation optimization.
Moreover, we aim to incorporate complex datasets that establish benchmarks and open avenues
for novel algorithmic solutions. Datasets may also be introduced in response to community
demand or as invited contributions. We welcome opportunities to review contributions from
groups exploring high-dimensional optimization, to collaboratively grow this evolving body of
work.

Materials and methods
In this section we describe how each featured dataset has been collected. We wrote this section
with a focus on clarity and a level of readership accessible to those without a background in
neuroscience.

Dataset 1 – Cortically evoked muscle responses: NHP forelimb and rat
hindlimb

Important

Input: coordinates of an electrode in a 96-electrode intracortical array for NHP and
32-electrode intracortical array for rats.Output: Motor Evoked Potentials (MEPs) from
4 to 8 muscles, forearm and hand muscles for NHP and leg muscles for rat. Replicates:
Data were collected from N=4 NHP and N=6 rats (biological replicate). For each
independent muscle, technical replicates ranged from 10 to 28 repetitions. Depth:
The same neurostimulation is repeated 10 to 28 times per site (muscle) per subject,
resulting in an equivalent number of MEP measurements being collected. Each MEP
represents the muscle response within a time window of -100 to 200 ms relative to
the stimulation delivery (0 ms). Rationale: To develop optimization algorithms to
efficiently optimize neurostimulation within a set of electrode location options.

This dataset contains limb EMG responses to cortical stimulation in 4 male NHPs (2 macaques,
2 capuchins) and 6 female rats. The dataset, available on OSF, was collected to develop
a Gaussian Process Bayesian Optimization (GPBO) framework, an algorithm designed to
optimize neurostimulation parameters for maximizing MEPs. Cross-species data can challenge
the robustness and adaptability of optimization algorithms, testing their ability to generalize
across scales and from simpler to more complex cortical organizations, that approximate better
the human brain.

The detailed protocol for surgery and experiment is available on M. Bonizzato et al. (Bonizzato
et al., 2023; Choinière et al., 2024). The rats were implanted with 32-microelectrode arrays
in the hindlimb sensorimotor cortex and the NHPs were implanted with 96-electrode arrays
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implanted in the hand area of the primary motor cortex (M1). For rats, the EMGs were
implanted in leg muscles. For NHPs, the EMGs were implanted in hand and finger muscles.
When the stimulation protocol was running, the two capuchin NHP were under sedation and
the two macaques were awake. In the next sections of this preprint, we will refer to Dataset 1
as the NHP results; however, the rat outputs follow the same underlying concept.

Dataset 2 – Forelimb muscle responses to spinal stimulation in rats

Important

Dataset 2 * Input: coordinates of an electrode in an epidural 64-electrode array. *
Output: motor evoked potentials from 8 to 10 arm muscles. * Replicates: Data
were collected from N = 9 biological replicates, defined as the number of distinct
physical implants performed across 4 rats. Each implant corresponds to a separate
array placement on the spinal cord between levels C3 and C6. For each array position,
10 to 15 repetitions of single-pulse stimulation were delivered to each electrode in
random order using Tucker-Davis Technologies (TDT) equipment. * Depth: The same
neurostimulation is repeated 10 to 15 times per site (muscle) per subject, resulting in
an equivalent number of MEP measurements being collected. Each MEP represents
the muscle response within a time window of -35 to 40 ms relative to the stimulation
delivery (0 ms). * Rationale: To develop optimization algorithms to efficiently optimize
neurostimulation within a set of electrode location options and multiple concurrent
output muscle objectives (8-10 bilateral and varied agonist/antagonist muscles).

This dataset contains EMG responses to spinal cord stimulation in the forelimbs of 4 female
Long Evans rats. EMG electrodes were implanted bilaterally in the Biceps, Triceps, Flexor Carpi
Radialis, Deltoid, and Dorso muscles. Spinal cord stimulation was delivered via a 64-electrode
array placed epidurally.

• Experiment Description

A 64-electrode array was placed epidurally on the cervical spinal cord (C3–C6) in 9 distinct
placements across 4 sedated rats. In each animal, up to three array positions were tested
within this spinal segment. EMG activity was recorded from muscles in both forelimbs in
response to single-pulse stimulation delivered through the array.

• Surgical Procedure

The experiments were terminal. Rats were anesthetized with urethane (1 g/kg) prior to
surgery. After 30 minutes, they were transitioned to isoflurane anesthesia (�2%). Isoflurane
was withdrawn prior to stimulation, and the rat maintained under the initial dose of urethane.
Vital signs, temperature, and hydration were continuously monitored.

EMG Implants EMG microwires were implanted in the Biceps, Triceps, Flexor Carpi Radialis,
Deltoid, and Dorso muscles on both sides. Correct placement was confirmed by electrical
stimulation through the wires and observation of evoked movements. Wires were inserted
transcutaneously.

Spinal Cord Implants The dura mater was exposed from C3 to C6. Initially, a single electrode
was used to determine muscle response thresholds. A 64-electrode array was then placed
epidurally at up to three different locations.

• Data Collection

For each placement, 10 repetitions of single-pulse stimulation were delivered to each electrode
in random order using Tucker-Davis Technologies (TDT) equipment. Stimulation amplitude
was set to the threshold value identified during single-electrode testing.
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Processing
The raw signals in both datasets have been rectified.

Important

In addition to the raw data, a filtered version of the signal is provided in this dataset.
The following processing steps were applied in order: - Blanking from stimulation
artefact; - Band-pass filtering (low cut at 70Hz, high cut at 1000Hz); - Notch filtering
at 60Hz; - Full-wave rectification.

Admonition

Sometimes, the EMG baseline signal may appear elevated above zero due to noise or
low-frequency drift. While NeuroMOSAICS open-source datasets include such baseline
variations, we applied an additional preprocessing step to the signals shown in the figure
to normalize the baseline to zero. To do so, the mean value of a 30 ms pre-stimulation
window was computed for each trial and subtracted from the corresponding EMG signal.
This normalization ensures consistent baseline levels across channels and reduces the
risk of misinterpretation, for instance, mistaking baseline offsets (e.g., 2 mV vs. 0.5
mV) as differences in signal quality or responsiveness.

Results
In this section, we frequently refer to the heatmaps in each Figure. Each heatmap corresponds
to a specific muscle from a subject and displays the average quantification of motor evoked
potentials (MEPs) across different electrodes. Those electrode arrays allow us to map the
topographic organization of the implanted motor region. Typically, the best-performing
electrodes cluster spatially. Each query refers to an individual stimulation.

Dataset 1
Dataset 1 was collected during in vivo sessions that involved repeated stimulations of electrode
locations in M1. These stimulation sessions were initially conducted on sedated capuchins and
on awake rats and macaques. The average MEP responses across spatial locations show a
topographic organization of M1 such that nearby cortical locations have similar MEP patterns
(Figure A.). While identifying the optimal electrode in this condition may seem straightforward,
it presents significant challenges. The heatmaps represent averages of MEP, but individual
responses are influenced by excitability, noise factors, and possibly non-stationarity, leading to
considerable variability. This variability can obscure important details at the single-trial level.
In Figure B., the upper-left panel displays the average response across multiple stimulations
delivered through a specific electrode, providing a global overview of the evoked activity. In
contrast, the two other panels offer a more detailed perspective : the distribution of peak
amplitudes reveals the consistency of responses across trials, while the stack of individual
traces allows visualization of how responses evolve over time. Given the goal of minimizing the
number of queries, the task becomes finding the right balance between using enough queries
for a robust solution and limiting the search to minimize stimulation.
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Figure 1: Interactive content placeholder

Please see the living preprint to interact with this figure.

A. Heatmap of motor responses across a 96-electrode array in M1 of an anesthetized
Cebus: This panel displays the mean motor responses for a selected muscle, averaged
across repetitions, for each electrode in a 96-electrode array (10x10 grid with 4 unused
electrodes). To view data for a specific muscle, select the desired muscle from the list
on the right. The available muscles are: Flexor Carpi Ulnaris (FCU), Extensor Digitorum
Communis (EDC), Extensor Carpi Radialis (ECR), Opponens Pollicis (OP), Flexor
Pollicis Brevis (FPB), and Adductor Pollicis (AP). B. Detailed Motor Evoked Potential
(MEP) response for a single electrode : This panel provides detailed visualizations for
the MEP response corresponding to a selected electrode from the heatmap in A (click
on the corresponding cell to select it). - Top Left: The mean MEP waveform across all
repetitions. - Top Right: The distribution of peak amplitudes for the selected electrode.
- Bottom Left: A stack plot showing the rectified raw MEP waveforms for individual
repetitions. Red color hilights outliered trials.

The clear topographic organization of the responses observed in sedated NHPs become
considerably noisier and more selective in awake NHPs (see Figure A.). These NHP implants
were older, and the quality of the electrical interface at the EMG wire-muscle contact can
degrade over time, potentially contributing to variations in noise levels in the recorded muscle
responses across subjects. We can also identify two ranges of electrodes (column 8 and 9

in Figure A.) that consistently exhibit very low signal amplitudes across all muscles. This
suggests that these portions of the electrode matrix may not have been in full contact with
the tissue. Additionally, the NHPs were awake, which may have further contaminated MEPs
with spontaneous muscle activations, which are possibly present even when the condition of no
muscle activity pre-stimulation is enforced. Consequently, this dataset provides an opportunity
to test optimization approaches on data that differ significantly from the previous dataset.

Figure 2: Interactive content placeholder

Please see the living preprint to interact with this figure.

A. Heatmap of motor responses across a 96-electrode array in M1 of an awaken
Macaque : This panel displays the mean motor responses for a selected muscle,
averaged across repetitions, for each electrode in a 96-electrode array (10x10 grid
with 4 unused electrodes). To view data for a specific muscle, select the desired
muscle from the list on the right. The available muscles are: First Dorsal Interosseous
(FDI), Flexor Digitorum Superficialis (FDS), Extensor Carpi Radialis (ECR), Extensor
Digitorum Communis (EDC). The EDC muscle exhibits only noisy signals and does not
contain clear evoked responses. However, it serves as a useful example of how a single
stimulation contaminated by an artefact can significantly distort the average response.
This highlights the importance of analyzing multiple repetitions of the same stimulation
to ensure that the averaged signal accurately reflects true underlying activity rather
than artefactual noise. B. Detailed Motor Evoked Potential (MEP) response for a
single electrode : This panel provides detailed visualizations for the MEP response
corresponding to a selected electrode from the heatmap in A (click on the corresponding
cell to select it). - Top Left: The mean MEP waveform across all repetitions. - Top
Right: The distribution of peak amplitudes for the selected electrode. - Bottom Left:
A stack plot showing the rectified raw MEP waveforms for individual repetitions. Red
color hilights outliered trials.

High selectivity becomes particularly problematic when the search space is expanded (such as
by adding additional parameters like stimulation amplitude and frequency) and even more so
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in noisy conditions. If it makes it harder to identify the best electrode, the global maximum
of the function to optimize, and increases the risk of getting stuck in local maxima during
optimization. For example, while searching for the electrode that grants maximal response in
the First Dorsal Interosseous muscle (see Figure A.), one could easily get stuck at coordinates
(7,7) on the heatmap. If the algorithm hasn’t yet queried the optimal electrode at coordinates
(4,1), and instead queries (7,7) at a given query q, it will produce the best result thus
far. The algorithm would then continue to exploit the local maximum around (7,7) without
knowing that a better option exists unless it explores very specific electrodes (4,1) or (5,1)
(see Figure B.). With around 50 electrodes to query in a limited number of stimulations,
the algorithm’s exploration strategy becomes critical to avoid local maxima. This issue of
local maxima and high selectivity is also observed in awake rats, as seen in the Left Medial
Gastrocnemius available in Dataset 1 on OSF. However, the smaller array (32 electrodes,
compared to 96 for NHPs) reduces the complexity of the search.

The temporal aspect of the responses can play an important role in the nature of the response.
In any scenario from this dataset, the stronger MEP are peaking at the same time as we can
observe in the stacked MEP where deeper blue lines are vertically crossing all the trials.

Considering noise (such as muscle activations unrelated to stimulation), some responses may
convey misleading information about the overall response pattern. A clear example is provided
by the EDC muscle in Figure . The response map indicates a high activity level for electrode
(0,6). However, upon closer examination of the stacked EMG traces, it becomes evident that
this apparent response is driven almost entirely by a single trial, the 18th stimulation, which
shows an isolated increase in MEP amplitude. Notably, this sharp deflection is also visible in
other channels, such as electrode(7,2), but occurs at a time (~170 ms post-stimulation) that
is unrelated to the actual stimulation event. This suggests the presence of a transient artefact,
underscoring the importance of examining individual trials alongside average responses to avoid
misinterpretation.

Identifying these outliers in real time is challenging, but it is valuable to do so afterward as it
raises awareness of their potential impact on optimization processes. The parameter is_valid
classifies outliers in two categories: those that can be excluded due to excessive EMG activity
prior to stimulation and those that cannot be excluded, where no prior EMG activity was
observed, but the response amplitude is unusually high (such as the 18th trial of electrode
(0,6) in ECD muscle, Figure ). Accurate online processing can easily reject the first of the
two classes, while the second is unlikely to be rejected in a real use case. The first category is
highlighted in red in the stack MEP figures. The mean and standard deviation of responses
in Dataset 1 still include these outliers. A data scientist wishing to remove these spurious
responses from the optimization “ground truth”, or objective value, must though recalculate
the mean responses.

Admonition

The collection of Dataset 1 was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC; RGPIN-2022-04210).

Dataset 2
This dataset was collected from four anesthetized rats, resulting in smooth topographic
organization of the spinal cord with high variance for the average responses. Similar to
capuchin in Dataset 1, the relaxed muscle state in sedated animals, with no intention of motor
control or reflex interference, contributes to the smooth responses. However, unlike Dataset
1, this dataset involves spinal cord (spinal cord) stimulation, leading to some key differences
in the results. One notable distinction is that the high-response electrodes are more widely
distributed spatially, which may be attributed to the different spatial recruitment properties
of spinal cord stimulation compared to motor cortex stimulation. Because dorsal spinal cord
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stimulation is, from a circuit perspective, closer to the muscle target than M1 stimulation,
there is less variability in the responses. Indeed, less synapses (and thus less pulses) lead to a
higher repeatability of the responses. This very clear repeatability (a straight deep blue line
across each trial in stack MEP figures) makes the identification of outliers easier, and they are
also listed in a parameter is_valid and highlighted in red in the stack MEP figures. In this
case, the mean and the standard deviation were computed without those outliers.

Figure 3: Interactive content placeholder

Please see the living preprint to interact with this figure.

A. Heatmap of motor responses across a 64-electrode array placed on C5 in an
anesthetized rat : This panel displays the mean motor responses for a selected muscle,
averaged across repetitions, for each electrode in a 64-electrode array (8x8 grid with 4
unused electrodes). To view data for a specific muscle, select the desired muscle from
the list on the right. The available muscles are: Right Triceps (R Tr), Right Biceps
(R Bi), Right Torso (R Trs), Right Wrist flexor (R WrFlex), Right Spinal Deltoid (R
SpDel), Left Triceps (L Tr), Left Biceps (L Bi), Left Tors (L Trs), Left Wrist flexor (L
WrFlex), Left Spinal Deltoid (L SpDel). B. Detailed Motor Evoked Potential (MEP)
response for a single electrode : This panel provides detailed visualizations for the MEP
response corresponding to a selected electrode from the heatmap in A (click on the
corresponding cell to select it). - Top Left: A stack plot showing the rectified raw
MEP waveforms for individual repetitions. Red color hilights outliered trials. - Top
Right: A stack plot showing the filtered MEP waveforms for individual repetitions. -
Bottom Left: The mean MEP waveform across all repetitions. - Bottom Right: The
distribution of peak amplitudes for the selected electrode.

Whereas the clear repeatability from this dataset has a positive impact on the optimization
process, the excitability and noise can be, in some cases, particularly challenging. Indeed, the
excitability can increase and decrease drastically in a few queries (like for electrode (2,4) in
Left Biceps (see Figure B.)), and some electrodes are losing contact on half of the process
(like in electrode (4,3) in Left Biceps), making it harder to identify a best electrode and to
take a decision on the definition of what is the best electrode. This phenomenon suggests
potential future use of this dataset to take into account the non-stationarity of the responses.

The higher variance in this dataset tends to blur the distinction between the best average
solution and its neighboring electrodes. This makes it easy to identify the best location area,
but also more challenging to point out the precise optimal electrode. As the variability in the
responses increases, it becomes more likely that, at query q, the best electrode yields a lower
response than nearby ones. For instance, in the Right Biceps muscle (see Figure A.), the peak
amplitude distribution from the best electrode (coordinates (2,5)) is centered at 13.1 mV,
but there is an outlier stimulation yielding a response of 11.2 mV. Meanwhile, the electrode at
coordinates (2,4) has stimulations with outputs around 13.1 mV. If an algorithm repeatedly
queries electrode (2,4) and obtains consecutively good motor responses, while a single query
of electrode (2,5) produces an outlier of 11.2 mV, the algorithm might incorrectly infer that
electrode (2,4) is superior. Although (2,4) is not the global maximum, it remains a strong
candidate because it provides stable, high-quality responses and is situated within the highest
region of the heatmap.

Another key insight from this dataset is the spatial organization of the spinal cord for motor
control. There is a clear lateralization, with the right side of the spinal cord predominantly
evoking stronger responses in muscles on the right side of the body, and the left side evoking
responses in left-side muscles. Additionally, there appears to be spatial clustering in spinal
cord sites evoking motor potential in specific muscles. The spatial organization is non-trivial
given that the dorsal aspect of the spinal cord, which we stimulated, is associated with afferent
pathways, and motor output depends on reflex responses (Capogrosso et al., 2013). This
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insight has significant implications for optimization in neuromodulation. The function linking
stimulation parameters to motor responses is inherently complex and unknown, posing a
“black-box” optimization problem. In order to facilitate the optimization task, incorporating
prior knowledge (Guay-Hottin et al., 2025) about the spatial organization of the spinal cord can
significantly enhance the efficiency of optimization algorithms, such as BO, that is designed
to leverage prior information to reduce the complexity of the search space and accelerate
convergence to optimal solutions (Greenhill et al., 2020). For example, integrating the
knowledge that stimulating the left (or right) dorsal spinal cord enhances motor responses on
the corresponding side of the body allows the algorithm to narrow its spatial exploration. This
targeted approach can substantially decrease the number of iterations required to identify the
optimal stimulation parameters, improving both the speed and accuracy of the optimization
process.

Admonition

Funding The collection of Dataset 2 was supported by New Frontiers in Research Fund
Exploration (NFRFE-2022-00394).

Conclusion
In this living white paper, we introduced NeuroMOSAICS, an open-access, reproducible and
diverse dataset collection covering neurostimulation across different species, neural interfaces
and search space dimensions. The two scenarios presented in this first version support
optimization research in diverse tasks and objectives. The first dataset provides EMG responses
from cortical stimulation in both awake and sedated NHPs and rats, while the second dataset
focuses on bilateral EMG responses from spinal cord stimulation in sedated rats.

This collection is an attempt to bring together open neurostimulation characterization datasets
shared by the community. These datasets, often difficult to collect due to cost, ethical, and
technical constraints, are typically shared only on a limited scale. By making them more widely
available, we aim to support researchers in developing and validating complex optimization
and data-intensive algorithms tailored to neurostimulation challenges. We aim to foster
collaboration between neurostimulation researchers and the ML community, encouraging the
creation of algorithms better suited to concrete neurostimulation problems.

Availability
The datasets presented in this living white paper are openly available on the platform OSF:
Dataset 1 (M1 stimulations on NHPs) : https://osf.io/54vhx/, reference number : 54vhx,
Dataset 1 bis (M1 stimulations on rats) : A similar dataset that Dataset 1 but conducted on
rats is also available at https://osf.io/54vhx/, reference number : 54vhx, Dataset 2 (spinal
cord stimulations on rats) : https://osf.io/kpb7x/, reference number : kpb7x. Additional
datasets will be progressively integrated into this living white paper. For each dataset already
included, this paper is augmented: a supporting text is provided to clarify its relevance and
potential applications, along with a direct link to access the data.
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